Over the past year, I have been helping customers with their Copilot for Microsoft 365 deployments. The number one complaint I have received from customers has to do with the ability to provide quality Copilot Reports. If you are reading this, you are probably not alone. However, some recent changes have come about that will help us get better reporting.
While in preview at the moment, Microsoft released reporting APIs for Copilot User Activity. While these endpoints are in preview with a target release of November 2024, we can start taking advantage of them today. The biggest challenge is that in order to provide some quality reporting, we will need to start populating data. To make this a reality, this week’s post will be 100% focused on populating data in your Fabric Lakehouse.
It is important to note that I cover a lot of the mechanics of how to make this happen in previous posts. I have linked to the appropriate posts where applicable but wanted to highlight this now. There are a lot of moving pieces to make this happen and there is some prerequisite knowledge for you to be successful. Please take the time to reference these posts when applicable.
Elephant in the Room with Copilot Reports
Before we get started, we need to address the headwinds with Copilot Reports. If you know me personally, you know I am a balls and strikes kind of person. I call things as I see them and sometimes that means calling out some of the issues that come with new solutions.
Challenges with the Data
If you are a data person like me, you find the reports available from Microsoft to be frustrating. They are detailed with specific behaviors inside of Viva Insights, but you cannot drill down enough to see where use cases are being leveraged. The only way to look at individual user activity has been with the Microsoft 365 Admin Reports for Copilot. This data is what the API endpoints are pulling at this time. While the individual detail is nice, it does not resolve the frustration we have been seeing.
The reason for this frustration is twofold. Unlike the endpoints we explored in my previous series, these endpoints have two drawbacks. The first is that I cannot identify activity for a specified date. I can only pull for a period of activity. Second, I do not get a count of activity for each use of Copilot. Instead, I just get a date for the last time Copilot was used. Most of my customers have been vocal about this second point.
Overcoming the Challenges
I will not speculate on why Microsoft has chosen this path. Instead, I pushed to find a way to work around the challenge and make something happen. Instead of focusing on individual days of data, we will need to look at data week over week. Is this an imperfect system? Absolutely! But I rather focus on what I can do than what I cannot do. Previously, I was able to do this by exporting this data on a weekly basis. Annoying? Yes, but now we can automate it with the advent of the new reporting endpoint. And I was even able to enhance other elements of my analysis as a result!
This all means our reporting will simply look at user activity week over week with Copilot. This will help us drive the value we seek in some meaningful way instead of guessing at how people are leveraging Copilot. My customers have found this insight valuable in driving better adoption which results in stronger utilization.
Foundations of Copilot Reports
If you followed along for my series on Graph API reports, you should already be familiar with the key steps to get things going for this project. While we did a lot of this in that series, we will be revisiting parts of it again. To simplify the process, we will go through high level the steps we need to complete. If you need a primer on this, please go back to my previous series to go through the details on how to prepare a Lakehouse in Microsoft Fabric.
Build a Fabric Lakehouse
To get started, sign into Microsoft Fabric and create a workspace for your Copilot Reports. You will likely want to share these reports with others and it might make sense to create a dedicated workspace for this. The key point here is that we will want a new workspace to streamline the data collection process as it will be changing.
With our Lakehouse in place, we are ready for the next step in the process.
Creating Tables in the Lakehouse
Just like we did before, we will use a Fabric Notebook to create our tables. To get started, download the Create Graph Tables notebook I created for you. Remember, that you must swap your context to the Data Engineering view before you can import the notebook.
Once imported, you can open the notebook and connect it to your new Lakehouse. From there, you can run the notebook. This process will take a few minutes, but will hopefully make some parts of this process much easier for you long term.
With our tables connected, we need to start harvesting data from Microsoft Graph.
Harvesting Data for our Copilot Reports
Now that we have our foundation in place, it is all about getting our data liberated from Graph and into the Lakehouse. To get this process started, download the Copilot Reporting Template I created for your Dataflow. Once downloaded, create a Dataflow Gen2 and import your template:
Once imported, you will need to update your parameters with your Service Principal information. If you never did this before, follow the steps I outlined in my Reporting with the Graph API post a few weeks back to ensure you have one configured properly. If you do, just update the parameters:
Now that you have updated your Service Principal information, you just need to update your connection properties ensuring all endpoints are using an anonymous method as we are using the Service Principal to authenticate. From there, you just need to map your data to your new Lakehouse:
We will need to map the following tables with the following properties:
Query Name | Lakehouse Table Name | Behavior |
---|---|---|
GraphUsers | graph_users | Replace |
Date_Table | date_table | Replace |
LicensingData | licensing_data | Replace |
TeamsUserActivity | teams_user_activity | Append |
OneDriveUserActivity | onedrive_user_activity | Append |
SharePointUserActivity | sharepoint_user_activity | Append |
VivaEngageUserActivity | viva_engage_user_activity | Append |
CopilotData | copilot_data | Append |
CopilotLastActivity | copilot_last_activity | Append |
Once this is completed, we can publish our Dataflow.
Next Steps
Now that we have all of this in place, it is time to setup the refresh. If you remember from the beginning, we will be looking this data on a weekly basis. Therefore, we will want to setup the refresh to pull the data weekly. For myself, I setup the refresh to occur Sunday mornings at 9 AM as that is a quiet time of the week. It also gives me the best shot at pulling the data on the same day of the week. Remember, we are at the mercy of Microsoft and when they are releasing the data, so we have to somewhat hope for the best in this situation.
With the refreshes running weekly, we will start to collect some meaningful data we can use. Next week, we will work on preparing the semantic model to allow us to connect our Power BI report. Until then, we will keep harvesting data to help bring better value to our report!
2 Pingbacks